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LOCAL INSTABILITY OF SYMMETRICAL RECTANGULAR TUBES
UNDER AXIAL COMPRESSION

By Eugene E., Lundquist
SUMMARY

A chart is presented for the coefficient in the for-
mula for the ceritical compressive stress at which cross-
sectional distortion begins in a thin-wall tube of rec-
tangular section symmetrical about its two principal axes.
The energy method of Timoshenko was used in the theoreti-
cal calculations required for the construction of the
chart. The deflection equation used in this method was
selected %o give good accuracy. The exact vaelues given by
solution of the differential egquation were calculated for
a number of cases and it was found that the energy solu-
tion was correct to within a fraction of 1 percent.

The calculation of the critical compressive stress
at stresses above the elastic range is also discussed.
In order %o demonstrate the use of the formulas and the
chart in engineering calculations, several illustrative
provlems are included.

INTRODUCTION

In the design of compression members for aircraf?,
whether they be stiffeners in stressed-~skin structures or
struts in trussed structures, the allowable stress for
the member is equal to the lowest strength corresponding
to any of the possible %types of failure. In reference 1,
all types of column failure =re classed under swo head-
ings:

(a) Primasry, or general, failure.
(b) Secondary, or local, failure.

Primary, or general, failure of a column is defined as
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any type of fallure in .which thé cross sections are trans-—
lated, rotated, or both translated and rotated dbut not dis-
torted in their own planes (fig. 1). Secondary, or local,
failure of a column is defined as any tyve of failure in
which the cross sections are distorted in their own vlanes
but not translated or rotated (fig. 2). Consideration is
given in this paper only to local failure.

One of the factors to be congidered in a study of lo-
cal failure is the critical compressive stress at which
the cross section begins to distort. This critical stress
can usually be given in coefficient form. The purvose of
tis raper is to present a chart that will be useful in
establishing the 'coefficient to be used in calculating the
critical compressive stress at which cross—-sectional dis-
tortion beeins in a thin-wall rectangular tuoe symmetrical
about its two principal axes.

The calculations required to evaluate the coefficient
plotted in the chart were made by the energy method of
Timoshenko. (See reference 2, p. 324, art., 62.) The ex-
act values of the coefficient given by solution of 'the
differential equation (reference 2, p. 337, art. 65) were
also calculated for a number of cases and the energy solu-—
tion was found %to be correct to within a fraction of 1
percent. Becausse the calculations are long and were made
as a vart of a more extended study of local failure in thin-
metal columns, they have been omitted from this paper.

CEHART

The calculation of the critical compressive stress at
wiich crogs-sectional distortion bezins in a symmetrical
rectangular tube 4s, in reality, a problem in the buckling
of thin plates, propver consideration being given to the in-
teraction between adjeacent walls of the tube. Timoshenko
has given the critical stress for a rectangular plate un-
der ed§e compres31on in the following form (reference 3,

». 603
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- B is tension-compression mo&ulus 0f elasticlty
for the material. :

W, Poisson’s ratis for the material.
Yy, ‘thickness of the platse..
b, width of the plate..

kX, &a nondimensional coefficient that depends upon
the conditions of edge sunbort and the dimen=-
sions of the. plate.’

Equation (1) can be used to calculate the critical
combpressive stress at which cross-sectional distortion be-
gins in a thin-wall tube symmetrical about its two prin-
cipal axes. In this cage the values of k are obtained
from figure 3. The symbols h and ¢, are the width and

thickness, respectively, of %the wider pair of walls; D
and t3 refer to the narrower pair of walls. The curves

in figure 3 were established by pleiting the calculated
values of k, glven in tabdble I, for the energy solution.

LIMITATIONS OF CHART

The chart of figure 3 must be considered as aprroxi-
mate. For engineering use, however, it may be regarded as
& close approximation because the exact values given by so-
lution of the differential equation show that the energy
solution is corrsect to within a fraction of 1 percent.

(See table II.) .

The wvalues of %k given in the chart are the minimum
values possidble for a tube of infinite length. For engi-
neering use, howevser, these values will avply to any tuve
baving a length greater than the width of the walls that
have the larger ratio of width to thickness. The length
of all tubes likely to bs encountered in aircraft design
will thus fall within the range to which the chart applies.
It should be mentioned that, for very short tubes vhere
length does have an appreciable effect, the values of k
glven in figure 3 are conservative.

The values of Lk given herein avpply to tubes in which
the material is both elastic and isotropic. Steel, alumi-
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num alloys, and other metallic materials usually satisfy
these conditions, provided that the material is stressed
wilithin the elastic range. When a material ig stressed
above the proportional 1limit in one dirsctlion, it is no
longer elastic and is probably no longer isotropic. In a
later section of this report it is shown how equation (1)
and the chart of figure 3 many be used to calculate the
criticnl stress when the rectangular tube is loaded beyond
the provortional limit.

DEFLECTION EQUATION

e previously mentloned deflection equation used in
the energy solution had the following form for each wall
of the tube:

~ '] .
4
o= Ligg (by - y2) + B gin qg_Jsin EgE (2)
where
w ig deflection normal to wall.
L, length ¢f wall equel to length of tube.
n, number of half waves that form in the length
of the wall. The ratio L/n is therefore
the half-wave lengsh of a wrinkle in the di-
rection of the lsngth.
b, width of wall conceraed.
% and ¥y, coordinates measured from end and side of wall,

regsvectively.

U and B, coefficients. The values of U and B
for one pair of opposite walls are expressed
in terms of U and B for the other pair
of opposite walls by the use of the condil-
tions that the rotation at the edge of adja=
cent walls be equal and that the bending
moments at the edge of adjacsent walls be in
equilidbrium., The ratio of U/B for one
wall and L/n are then given values that
cause the critical strese to be a minimum.
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DISCUSSION OF CHART

When -tb/th is equal'to or greater than 1, the wider

of the ovposite walls of the rectangular tube are the weak-
er. The curves for tb/th of 1 and 2 in figure 3 there-

fore show how the strenzth of the wider walls is affected
by the width of the adjacent walls. It should be noted .
that these curves are smooth, having no sharp bdbreak such
as the curve %y/%p for 0.5 has at a b/h value of 0.65.

When t3/%y, is less than 1, the wider pair of the

opposite walls are the weaker provided thatb b/h is less
than a definite value. When ©b/h 1is greater than this
value, tne narrower pair of the opposite walls are the
weakeér, At the value of b/h where the weaker walls
change from the wide to the narrow side of the rectangle,
there is a break in the curve for k. TFor t./ty = 0.5,

thie break comes approximately at b/b = 0.65.

CRITICAL STRESS FOR LOADING BEYOKD

THE PROPORTIONAL LIMIT

In the elastic range, the critical compressive stress
for an ordinary column that falls by bending is given by
the Zuler formula. Beyond the proportional 1limit, which
marks the upmer eand of the elastic range, the reduced
slope of the stress—straln curve requires that an effec-~
tive modulus E Dbe substituted for Young's modulus E. in
the Euler formula. The value of E is sometimes written
as TE, .

T = 1E (3)

The vaiue of T +varles with stress. By the use of the
double-nodulus thecry of column action, theoretical val-~
ucs of T can be obtained from tiae coupressive stress—
strain’curve for the material (referezxce &, p. 572, art.
37, and references 4 and 5). Tests shqw that, in prac-
tice, theoretical wvalues of T, derived on the assump-
tion that no deflection occurs until the critical load is
reached, are too large. It is therefore best, for prac-
tical use, to obtain the values of T from the accepted
column curve for the material in the manner outlined in
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the illustrative problem. The wvalues of T thus odbtained
take into account the effect of imperfections that cause
deflection from the beginning of loading as well as other
factors that may have a bearing on the strength.

For cross~sectional distortion of a thin-wall rectan-
gular tube, the critical compressive gtress in the elas-
tic range is given by equation (1). Above the provortion-
al limit, the critical compressive stresg is glven by
equation (1) with an effective modulus TNE substituted
for Young'!s modulus E, or

=) 2
fTopit = 1 “E“E“*Egﬁh"g . (4)
12 (1-p°) 1

In the absence of adequate test data, the wvalue of T can-~
not be definitely established. It 1s reasonable to ex-
vect, however, that T and T are related in some way.

On the essumption that TN is a function of T, several
possible relations were studied.

When an ordinary column begins to deflect, failure is
resigted by the longitudinal bending stiffnesg of the el-
emental volumes of material composing the member. The re-
duced critical strength at stresses beyond the proporition—
al 1limit i1s, therefore, explained by a reduction in the
longitudinal bending stiffness, which is caused by tho
smaller slope of the stress~strain curve.

Then cross—sectional distortion bvegins in a thin-wall
rectangular tube, fallure is resisted by the following
characteristics of the slemental volumesg of material com-
posing the walls of the tube:

1. Longitudinal vending stiffness.

2, Torsional stiffness.

3+ Transverse bending stiffness.
The reduced critical strength for local fallure at stress-
es beyond the proporitional limit is, therefore, similarly
explained by the wvarying reductions in 1, 2, and 3 caused

by the smaller slope of the sgbtress~strain curve.

In article 71 of reference 2, Timoshenko discusses
the effect of certain reductions in 1, 2, and 3 on the
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critical stress for a simply supported plate under edge
compression,

In the following discussion, the general principles
of thia procedure are used.

The differential equation of the deflection surface
of a plate under edge compression in the x direction is
2 .4 4 4
L w 3w 3t w 2w |
Ft 2% g ==DdD|Sp+2 + | (5)
3% Lax" 32 3y 3y d :

where
£ ls stresgs on the loaded edges of the plate.

t, thickness of the plate.

3
D = ——E—E——E—, flexural riglidity of the plats.
12 (1-p°)

The left side of equation (5) is concerned with the exter-
nal forces on the plate that cause buckling, whereas the
right side 18 concerned with the inbternal resistance of
the plate to buckling. The first and the third terms in
the brackets on the right side of equation (6) are con-
cerned with the longitudinal and the btransverse bending,
respectively, whereas the second term is concerned prin-
cipnlly with the ftorsional stiffness.

It is assumed that, when a plate under edge compres-—
sion is loaded beyond the proportional limit, the thres
terms in the bracket nn the right side of equation (5) are
reduced by multiplying each by a different function of T,
where T 18 defined by the relation,

T = —_ ‘ (6)

If these functions of T ars Ty sy Tgy and T respec—
tively, the differential equation begomes

a 4 4 4
O W _ D o w A" w o w

£ & = - = ¥ 4+ 2 —_— - + 7
x> % [Tl ax* Ta 3x2 ay@ T3 dy4 } (7)

It is desirable at this point to discuss the evaluation of

5 and Tse
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Then an ordinary column is loaded beyond the promor-
tional limit, the longitudinal bending stiffnesg 1s multi-
plied Dby the factor T, which is less than unity. 3Because
longitudinal bending in a plate or column ig the same tyve
of action, it is reasonadle to -write

Ty = T ' (8)

Deyond the vroportional 1limit, the term principally
associated with the torsiongl stiffness is multiplied by
T, « According to Bleich (reference 6), the factor T,

should lie between T and unity. Since T is always
less than unity, Bleich selected

TB =/T (9)

es a convenient value. Timoshenko (reference 2) algso usocs
thisg velue.

After analyzing the results of some 500 tests of an-~
gle columns where fallure occurred by twisting, Kollbruaner
(reference 7) concluded that, beyond the proportional lim-
it, the torsional stiffness should be multiplied by the
factor (7 +,./7)/2. Thus, according to Kollbrunner,

Ty = I~i£ﬂfz ' (10)

where the values of T are o0btained from the stresg-—
strain curve by use of the following formula:

Tt
B

= 3
T !

where E! 1s the slope of the stress—strain curve at the
stress for which the value of T 1g desired.

4

T (11)

The method usef by Kollbrunner to determine T isg
based on the assumption that no deflection takes place un-
til buckling occurs. Consequently, all the effects of
deflection from the beginning of loading are included in
his relation between T and T. In practical enginecer-

ing caleculations, it is safer, as well as more expodient,
to determine T from the accepted cclumn curve for the
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material. By this procedure the values of T include ef-
fects caused by deflection from the beginning of loading.
Had Kollbrunner determined the values of T from the ac-—
cepted column curve for the material, a different rela-
tion between T and T would have been found. At a

given stress, the value of T determined from the acecept-
ed column curve for the material is smaller than the value
given by equation (11). It is therefore conservative %o

uso Kollbrunner's equation for T, when the values of T

arc determined from the column curve.

It seems to be common practice in the literature to
assume that the transverse bending stiffness is unaffected
when the longitudinal stress sxceeds the proportional lim-
1t for the material, This assumption is expressed in
equation form as follows:

Tz = 1 . (12)

Although this value for Ta seems reasonable, it i1s mere-
ly an assumption. The term to which Ta 1s multiplied is
about twice as important as the term to which T; 1is mul-
tiplied. Therefore, the conservative value for T, will

probadbly compensate for any unforeseen reduction in  T,.

Kow consider equation (7). Because opposite walls of
the rectangular tube are alike and symmetrical, only two
squations of the type of equation (7) are required in this
problem. From the solution of these equations, with proper
regard for the edge conditions at the corners of the tube,
a long transcendental equation for the buckled form of
equilibrium is obtained. Study of this transcendental
equation showed that if

T,y = T !
Ta = T (13)
"l’3 = 1

then . _
n = /? = (14)

This result is true for all wvalues of b/h and ty/ by
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Further study showed that if

Tl = T
r, = I1EAT (15)
o,
Ta = 1
then
n I+ 3. NT (16)

when b/h = 1 and ty,/ty, = 1. For any other values of
b/h and tb/th, equation (18) gave & conservative ap-
proximation for 1T as indicated by the comparison of nu-
mericnl velues given 1n table III.

The values of b/h and ty/%,, selected for the com-

parigon made in table III were chosen to represent some of
tae cases in which equation (16) would be least accurate.

Also the low value of 'T = 0.1 wused as & basis for com-~
parison was selected with the same thought in mind. For
larger volues of T, the percentage error ig reduced.

For comparison, the values of T given by equations
(14) and (16) are plotted against T in figure 4 in addi-
tion to the very conservative value of

n = T (17)

Ty ='T3 = Tz = T (18)

As 2 matter of interest, there is also plotted in figure 4
the relation between T and T when N = T2 and Tz is
glven by equation (10).

As o summary of this discussion, 1t is recognized
that the proper value of the effective modulus NE for
local buckling of thin-wall rectangular tubesg will depeond
upon tests. Careful conslderation of theory and experimen-
tal data, however, indicates that it ig gafe to assums
that N isg given by equation (16) provided that T is



N.A.C.A., Technical Hote No. 6B6 11

evaluated by use of the accepted column curve for the ma-
torial.

ILLUSTRATIVE PROBLEM

It is desired to calculate the critical compressive
stress at which cross-~sectional distortion begins in the
three 24ST aluminum alley rectangular tubes shown in fig-
ure 5.

The critical stress is given by equation (4):

Kk mt B 40 (2)

2 2
12 (1=p ) h

fopsg = 1

If equation (4) ig divided by M, the following equation
is obtained:
forig _ k m® E tha

19)
n 12 (1-p®) B° (

The probdlem is to find f__,, when the value of fcrit/n

has been established by equation (19).

It is assumed that the value of N is given by equa-—

tion (16):
n .__._Li_z____“/j (16)

The value of T depends upon the critical stress. There-
fore, the value of 1 also depends upon the critical
stress. Although theoretically the values of T and hence
of T can be obtained from the stress—strain curve, they
are best obtained from the accepted column curve for the
naterial,

Evaluation of .T

The esquations that show the variation of T with
stress for 24S8T aluminum alley which just meets the require~
ments of Navy Depnt. Specification 46A9%a (tensile yield
strength, 42,000 pounds per square inch) are given in part
I of reference 8. In order to show how similar equations
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can be derived for any other material, these equations will
be derived from the column formules given in reference 8
for 24S8T aluminum alloy.

The accepted column formulas for 24ST aluminum alloy
are ziven by equations (8) and (9) of reference 8. Thesc
equations are, resvectively:

For 41,200 > f_ .., > 19,600 1b./sq. in.

fopgs = 43,700 (1 = 0.,00752 L/p) (20)

-

for f,.gp < 19,600 1b./sq. in.

52
fopit = l_Q!OQEQQ (21)

/’

-]

O

Y

For the same member, the critical stress given Dby the
accenpted column curve must be equal to the critical stress
given by the Euler formula with an effective modulus

E = TE substituted for Young's modulus E; or
2
_m® T B _ T 105200000
fcl‘it = /L\‘a'— - (L>2 (22)
:'\Ez" \E

Now, if equations (20) and (21) are solved for L/p, the
following expressions are obtained:

For 41,200 > f,.44 > 19,600 1b./sq. in.

_'{_z_ - 43700 - fopi4 (23 )

P 328.6 '
For f ¢ < 19,600 1v./sq. in,

I =‘J/;2§§QQQQQ (24)

P ferst

Substitution of these values of L/p in equation (22) and
solving for T gives
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For 41,200 > £,.44 > 19,600 1b./sq. in,

cri
forig forit)
- —-er 2 — erly 24
T 8925 <l"24 35700/ (25)
For f,.44 < 19,600 1b,/sq. im.
T = 1 . ‘ (26 )

Equations (25) and (26) are the same as equations (15) and
(16) of reference (8) :

Evaluation of the Critical Stresgs for
Crosg—Sectional Distortion

By the use of equations (25) and (23), the value of
T can be established for assumed values of fopige The

values of T obtained can then be substituted in squation
(16) to obtain the corresvcnding values of T. If the as-
sumed values of forit are divided by the corresponding

values of T, a curve of forit against fcrit/n can be

plotted. The critical stress at which cross—sectional
distortion begins in the three 248T aluminum-alloy rectan-
gular tubes shown in figure 5 car then be calculated by
the use of equation (19) and the curve of f,nit against

fcrit/n‘

The solid curve in figure 6 shows the relation between
forit 8Rd fopg4/M  for 24ST aluminum alloy calculated in
the manner outlined. The three additional curves in fig-
ure 6 were cbtained by the equation for T noted on each
curve. The calculated values used to establish the curves

of figure 6 are given in tabdle IT.

The critical stress for cross—sectional distortion of
the tubes in figure 5 is cbtained as follows:

Tube &
ty 0.084 10
ty ~ 0.084¢ °
b _ 0.%82 _ 4
h 1.84 0.9
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¥ = 5,16 (read from fig. 3)

E = 10.66 x 10°% 1b./sq. in.

i

po= 0.3
From equation (19)

forit 5.16xm x 10,66 x10° x (0.084)°
- = ] =]
i 12 (1-0.3°) x (1.84)

= 103,600 1b./sq. in.,

From the so0lid curve of figure 6

fTopis = 56,400 1b./sq. in.
Tube B

tp _ 0.042

B e Es W5

th 0.084 0

A
|
>

.11 {read from fig., 3)
E = 10.66 x 10° 1b./sq. in.
p’ = 0.3

From equation (19)

fortt _4.11 %7 X 10,66 x 10° x<o.084)f

5 - = 82,530 1b./sq. in.
7 12 (1 = 0.3 ) x (1.84) :

From the solid curve of figure &

Topit = 34,900 1b./sq. in.
Tube C
Tn o_ 0.042 _
ty  0.021 © °°
b . 0.92
2 = 2e2Z = 0,5
h ~ 1l.84 °
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'k = 6,59 (read from fig. 3)
E = 10.66 x 10° 1b./sq. in,
W= 0.3,

From equation (19)

forit _ 6.59 X m> % 10.66.%x10%x (0.021)%
M 12 (1= 0.3°) x (1.84)%

= 8,270 1lb./sq. in.

Because f,.3¢/M <'19,600 1b./sq. in., 1% follows from
fizure 6 that
forit oA T
= ———ﬁ—-—- = 8,2_70 l'b_a/sq. in,
Had it been assumed that % = ~T, the value of f,n.4¢
for tube A would have been read from. the curve for T =

L ' fgrit

ST in figure 6 and would have been 37,400 pounds per
square inch instead of 36,400. The critical stress is thus
ralised only about 3 percent by using the least conservative
value of T considered herein. If the very congervative

value of Ti= 1T 1is used, the critical stress for tudbe A
ig read from the curve for TN = T in figure 6, which glves
forit = 33,200 pounds per sguare inch. The critical stress

is thus lowered about 9 percent hy using the most conserv—
ative value of .

The ultimate compressive strength of a thin-wall tube
of rectangular secticn will, in general, be higher than
the lead at which cross—sectional distortion begins. At
stresses approachling the yield voint for the material, the
critical load and the ultimate load approach, the same value.
No attempt has been made in this paper to discuss the ulti-
mate strength of a thin-wall itube of rectangular .section;
the solution for the critical load logically Precedes the
solution for the ultimate loead.

CONCLUS IONS

1. The critical compressive stress at which cross-—
sectional distortion occurs in a thin-wall rectangular tube
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symmetrical about its two principal axes is given by the
equation

E w8 B t,°
12 (1 - p®) n°

crit = 0

whore

E and p are Young's modulus and Poisson's ratio,
regpectively, for the material,

h and ths the width and the thickness, respsc-—
tively, of the wider walls.

k¥, a coefficlent devendent upon the relative dimen-
sions of the tube, minimum values of
wvinieh may be obtained from figure 3.

M, & factor taken so that MNE gives the effective
modulus of the walls at stresses beyond
the elagtic range.

2. The value of the effective modulus TNE for local
buckling of thin-wall rectangular tubes will depend upon
tests. In the absence of such tests, however, it is rea-
sonable to assume that 1T is a function of T, where TE
is the effective modulus of an ordinary column at stresses
beyond the elastic rangse. 4 careful study of the theory
and such experimental data as are available indicates that
it_is safe to agsume that N is given by the equation

provided that T ig evaluated by use of the accepted col-
unn curve for the material,

It ig important to mention here that, when TN 1s con-
sidered to be a function of T, the equation for T will
depend upon the manner of the evaluation of T. It T is
determined from the stress~strain curve on the assumption
that no deflection takes place until the critical stress
is reached, the effect of deflections from the beginning
of loading must be separately considered. If T ig de-
termined, however, from the accepted column curve for the
materiel in the manner outlined in the illustrative prob-
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lem, part, if not all, of this effect is automatically
considered.

5. Because N is g function of T, which is a
function of the critical stress, a curve of f,.5: &against

fcrit/n should first be plotted for the material by means

of the method of calculation outlined in the illustrative
problem. Then, in a given problem, fbrit/n can be com-

puted from the formula

Torsg _ kT E b7
n 12 (1 - p®) n°

"and the ecritical streéSucan be read. from.this curve.

Langley Memorial Aeronautical Laboratory,
National Advisory Committee for Aercnautics,
Langley Field, Va., January 6,  1939.
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TABLE I
Calculated Minimum Values of k

by the Energy Solutinn

i

75\\&Q<Ei 0.5 1 2

b

0 7,01 7.01 7.01
.050 5.13 6.45 -
.075 4.88 — -
.100 4.72 6.09 6.85
.125 4.62 - -
.200 4.43 5.68 6.73
.300 4.31 5,45 6. 65
.400 4,22 | - 5.29 6.61
.500 4.11 5.16 6.59
.525 4,08 —~— ——
.550 4.04 - -
.575 4.00 - -
.590 3.97 - -
.600 5.95 5.0% 6.57
.610 3.92 - -
.625 3.89 - -
L850 3.81 - -~
. 675 3.64 - -
.700 5.38 4.87 6.57
.800 2,58 4.66 | 6.57
-900 2.03 4.37 6.57
1.000 1.64 4.00 6.58
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TABLE II

Comparison of Values of k

No. 686

Computed

by the Energy Solution end

the Bxact Solution

ty b I k Error
th h (energy) (exact) (vercent)

c.5 | 0 7.0074 6.9707 0.524
.3 4.3066 4.3064 .005

.6 3.,9469 3,9469 0
7 3.3785 3.3485 .888
1.0 1,6441 1.,6377 ,391
1.0 | © 7.0074 6.9707 0.524
.3 5,4471 5,4395 .140
W7 4.8697 4.8672 .051

1,0 4.0000 4.0000 0
2.0 | o 7.0074 6.9707 0.524
' 3 6.6513 6.6245 403
.7 6.5G682 6.5453 .349
1,0 6.5764 6.5507 .391

20
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TABLE III

Comparison of Values of T Given by the Equation

n=I_.i_.3_5£
4

wvith the Exact Values Found by

Solving the Transcendental Egustion

b 13 T+3J?_ n Error
N th - T exact value (vercent)
0 0.262 0.278 5.76
. G 0.5 262 273 4.03
L7 .262 275 4.73
0 ' 0.262 0.278 5.76
o7 1.0 262 266 1.50
1.0 .262 .262 0
0 2.0 0.262 : 0.278 5.76
|
In all calculations for this tadle, T, = T, Tg =
r v ST

———z*——» Ty, =1, and T = 0.l.

=
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TABLE IV
Values Usgsed to Establish Curves in Fizgure 6

(All values in pounds per square inch)

ferit
N T 0
;. T T + /7T T+3/ T Mf;r
crit 2 ] 4

20,000 20,260 20,190 20,160 20,130
22,000 24,160 23,590 23,320 23,050
24,000 29,320 27,860 27,170 26,530
26,000 38,330 33,290 31,960 30,730
28,000 43,170 40,430 38,060 35,960
30,000 60,840 50,080 46,070 42,660
32,000 83,180 63,680 57,010 51,600
34,000 120,950 83,810 72,670 64,130
36,000 . 192,000 115,020 96,880 83,140
38,000 350,230 173,520 138,580 115,360
40,000 8&1,770 299,180 226,630 182,400
41,200 1,827,000 476,960 348,270 274,300
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